ASHRAE Standard Project Committee 105 Cognizant TC: TC 7.6, Systems Energy Utilization SPLS Liaison: Carol E. Marriott

J. Michael MacDonald, *Chair** Kimberly A. Barker* Steven W. Carlson* Michael P. Deru* Thomas W. Hicks*
Adam W. Hinge*
Dennis R. Landsberg*
Adrienne G. Thomle*

*Denotes members of voting status when the document was approved for publication.

ASHRAE STANDARDS COMMITTEE 2006–2007

David E. Knebel, Chair
Stephen D. Kennedy, Vice-Chair
Michael F. Beda
Donald L. Brandt
Steven T. Bushby
Paul W. Cabot
Hugh F. Crowther
Samuel D. Cummings, Jr.
Robert G. Doerr
Roger L. Hedrick

Robert G. Doerr Roger L. Hedrick John F. Hogan Eli P. Howard, III Frank E. Jakob Jay A. Kohler James D. Lutz
Carol E. Marriott
Merle F. McBride
Mark P. Modera
Ross D. Montgomery
H. Michael Newman
Stephen V. Santoro
Lawrence J. Schoen
Stephen V. Skalko
Bodh R. Subherwal
Jerry W. White, Jr.
James E. Woods
Richard D. Hermans, BOD ExO
Hugh D. McMillan, III, CO

Claire B. Ramspeck, Assistant Director of Technology for Standards and Special Projects

SPECIAL NOTE

This American National Standard (ANS) is a national voluntary consensus standard developed under the auspices of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE). *Consensus* is defined by the American National Standards Institute (ANSI), of which ASHRAE is a member and which has approved this standard as an ANS, as "substantial agreement reached by directly and materially affected interest categories. This signifies the concurrence of more than a simple majority, but not necessarily unanimity. Consensus requires that all views and objections be considered, and that an effort be made toward their resolution." Compliance with this standard is voluntary until and unless a legal jurisdiction makes compliance mandatory through legislation.

ASHRAE obtains consensus through participation of its national and international members, associated societies, and public review.

ASHRAE Standards are prepared by a Project Committee appointed specifically for the purpose of writing the Standard. The Project Committee Chair and Vice-Chair must be members of ASHRAE; while other committee members may or may not be ASHRAE members, all must be technically qualified in the subject area of the Standard. Every effort is made to balance the concerned interests on all Project Committees.

The Assistant Director of Technology for Standards and Special Projects of ASHRAE should be contacted for:

- a. interpretation of the contents of this Standard,
- b. participation in the next review of the Standard,
- c. offering constructive criticism for improving the Standard, or
- d. permission to reprint portions of the Standard.

DISCLAIMER

ASHRAE uses its best efforts to promulgate Standards and Guidelines for the benefit of the public in light of available information and accepted industry practices. However, ASHRAE does not guarantee, certify, or assure the safety or performance of any products, components, or systems tested, installed, or operated in accordance with ASHRAE's Standards or Guidelines or that any tests conducted under its Standards or Guidelines will be nonhazardous or free from risk.

ASHRAE INDUSTRIAL ADVERTISING POLICY ON STANDARDS

ASHRAE Standards and Guidelines are established to assist industry and the public by offering a uniform method of testing for rating purposes, by suggesting safe practices in designing and installing equipment, by providing proper definitions of this equipment, and by providing other information that may serve to guide the industry. The creation of ASHRAE Standards and Guidelines is determined by the need for them, and conformance to them is completely voluntary.

In referring to this Standard or Guideline and in marking of equipment and in advertising, no claim shall be made, either stated or implied, that the product has been approved by ASHRAE.

CONTENTS

ANSI/ASHRAE Standard 105-2007 Standard Methods of Measuring, Expressing and Comparing Building Energy Performance

SECTION	PAGE
Foreword	
1 Purpose	2
2 Scope	
3 Definitions	2
4 Compliance Requirements	3
5 Basic Measurement and Expression of Energy Performance	3
6 Additional Expressions of Building Energy Performance	6
7 Comparison of Building Energy Performance	6
Informative Appendix A: Measuring Energy Use	7
Informative Appendix B: Adjusting Energy Use to a 365-Day Year	8
Informative Appendix C: Elevation Adjustments for Gases	8
Informative Appendix D: Bibliography	9
ASHRAE Standard 105 Forms	10

NOTE

When addenda, interpretations, or errata to this standard have been approved, they can be downloaded free of charge from the ASHRAE Web site at http://www.ashrae.org.

© Copyright 2007 American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

1791 Tullie Circle NE Atlanta, GA 30329 www.ashrae.org All rights reserved. (This foreword is not part of this standard. It is merely informative and does not contain requirements necessary for conformance to the standard. It has not been processed according to the ANSI requirements for a standard and may contain material that has not been subject to public review or a consensus process. Unresolved objectors on informative material are not offered the right to appeal at ASHRAE or ANSI.)

FOREWORD

ANSI/ASHRAE/IESNA Standard 90.1-2004, Energy Standard for Buildings Except Low-Rise Residential Buildings, has been established by the amendment of the federal Energy Conservation and Production Act by the Energy Policy Act of 2005 as the commercial building reference standard for state building energy code incentives. The U.S. Green Building Council (USGBC) LEED® for New Construction (NC) Version 2.2 requires as a prerequisite that buildings shall be designed to comply with 90.1-2004 or an acceptably comparable local code. Compliance with Standard 90.1 requires meeting the prescriptive (design) requirements of the standard but for some of the design requirements allows the option of meeting specified energy-performance requirements.

For existing buildings, applicable standards are primarily performance based. For building types addressed in ENERGY STAR®, USGBC LEED for Existing Buildings (EB) Version 2.0 requires as a prerequisite that buildings demonstrate an ENERGY STAR rating of at least 60 using the EPA's Portfolio Manager and also that a summary of annual utility bills be provided, including cost and usage by energy amounts for each energy type used by the building. ENERGY STAR ratings use a building energy performance comparison framework.

This revision of ANSI/ASHRAE Standard 105-1984 provides a method of energy performance comparison that can be used for any building, proposed or existing, and that allows different methods of energy analysis to be compared. Historically Standard 105 has provided a basis for reporting energy use, with only limited ability to express or compare building energy performance. This version of Standard 105 extends the reach considerably and is intended to provide a common basis for reporting building energy use, expressions of energy performance, and comparisons of energy performance. This standard is classified as an ASHRAE Standard Method of Measurement.

1. PURPOSE

This standard is intended to foster a commonality in reporting the energy performance of existing or proposed buildings to facilitate comparison, design and operation improvements, and development of building energy performance standards. It provides a consistent method of measuring, expressing, and comparing the energy performance of buildings.

2. SCOPE

2.1 This standard

- covers the measurement of energy use for existing buildings and the prediction of energy use for proposed buildings,
- b. specifies techniques for measuring, expressing, and comparing the energy performance of buildings,
- c. provides minimum requirements for reporting predicted or measured energy performance, and
- d. provides minimum requirements for specifying a building energy performance comparison method.

2.2 This standard does not

- a. establish building energy goals or limits or
- b. present a method for certification of prediction methodology, such as computer programs.

3. DEFINITIONS

comparison framework: a set of data and a methodology that serve as the basis of comparison for a building or facility.

conditioned: heated and/or cooled. In this standard, *conditioned* means provided with a positive heat supply to maintain air temperature of 50°F (10°C) or higher, and/or provided with a positive cooling supply to maintain air temperature of 86°F (30°C) or lower.

degree-day [Kelvin-day]: the difference in temperature between the outdoor mean temperature over a 24-hour period and a given base temperature, used in estimating heating and cooling energy use. For any one day, there are as many degree-days (Kelvin-days) as there are degrees Fahrenheit (degrees Celsius) departure of the mean temperature for the day from the base temperature, 65°F (18°C). Note that the value of the cooling degree-days is always zero if the daily mean temperature is below 65°F (18°C) and the value of the heating degree-days is always zero if the daily mean temperature is above 65°F (18°C).

depletable (non-renewable) energy: energy that comes out of the ground in the form of liquids, gases, or solids and is considered depletable or non-renewable because it is energy that cannot be replenished in a short period of time.

energy: the capacity for doing work. Energy comes from many sources, including:

- a. fuels used for their energy value, as in steam and electric generation, process heating and cooling, space heating, and service water heating and cooling;
- b. purchased nonfuel forms of energy, such as purchased steam and electric power; and
- c. by-products, such as fuels, steam, and power, that are recovered from a source other than those listed in (a).

energy form: any viable source of energy, including electricity, purchased or delivered steam, hot water or chilled water, natural gas, bituminous coal, anthracite coal, coke, ethane, propane, liquid petroleum gas, gasoline (including aviation), special naphtha, kerosene, distillate fuel oil (including diesel),